본문 바로가기

self-supervised learning

Contrastive Learning: SimCLR, MoCo를 활용한 이미지 표현 학습 개요Contrastive Learning은 현대 Self-Supervised Learning 분야에서 가장 효과적인 학습 방법론 중 하나로 자리잡았습니다. 레이블이 없는 이미지 데이터로부터 의미있는 표현을 학습하는 이 기법은 SimCLR과 MoCo 같은 혁신적인 모델들을 통해 지도학습에 필적하는 성능을 달성하고 있습니다.Contrastive Learning의 핵심 원리기본 학습 메커니즘Contrastive Learning의 핵심 아이디어는 매우 직관적입니다. 유사한 데이터 포인트들은 표현 공간에서 가깝게, 다른 데이터 포인트들은 멀리 배치하는 것입니다. 이를 통해 모델은 데이터의 본질적인 특성을 파악하고 의미있는 표현을 학습하게 됩니다.구체적으로, 하나의 이미지에서 서로 다른 augmentation을 적.. 더보기
Self-Supervised Learning: 비레이블 영상의 활용 기법 개요Self-Supervised Learning(SSL)은 인공지능과 컴퓨터 비전 분야에서 주목받고 있는 혁신적인 학습 방법론입니다. 레이블이 없는 대량의 데이터를 활용하여 모델이 스스로 학습할 수 있는 기법으로, 기존의 지도학습(Supervised Learning)이 가진 한계를 극복하는 새로운 패러다임을 제시합니다.Self-Supervised Learning의 핵심 개념기본 원리Self-Supervised Learning은 데이터 자체에서 감독 신호(supervision signal)를 생성하는 학습 방법입니다. 영상 데이터의 경우, 이미지의 일부를 가리고 나머지 부분으로부터 가려진 부분을 예측하거나, 이미지의 순서를 바꾸어 원래 순서를 맞추는 등의 방식으로 학습이 이루어집니다.기존 방법론과의 차이점.. 더보기